Share Email Print

Proceedings Paper

Optical properties of silver nanowires in nanoporous alumina membranes
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Silver nanowires with different diameters are prepared within the pores of nanoporous alumina membranes. The linear optical properties of these composites are investigated (UV-Vis spectroscopy) as well as the nonlinear optical properties (Z-Scan technique). The dependence of both linear and the nonlinear optical properties on the average diameter of the silver wires is analysed, indicating that the spectral position of the plasmon resonance is red-shifted when the wire diameter is increased. This in turn leads to a different nonlinear optical behaviour. At comparatively low incident laser pulse energies all samples show saturable absorption (enhanced transmission). For higher energies, however, a second effect occurs which finally leads to an increase in the absorption coefficient. This second effect can probably be attributed to the ionisation of the silver wires due to multiphoton absorptions and a subsequent trapping of the electrons in the dielectric membrane. The ionised species, however, shows a different optical behaviour. The occurrence of this ionisation depends on the wire diameter. The larger the diameter the lower the incident laser pulse energy needed to ionise the wires. This corresponds to an increase in the linear absorption coefficient with increasing wire diameter.

Paper Details

Date Published: 27 August 2003
PDF: 8 pages
Proc. SPIE 4876, Opto-Ireland 2002: Optics and Photonics Technologies and Applications, (27 August 2003); doi: 10.1117/12.463671
Show Author Affiliations
Michael Kroell, Trinity College Dublin (Ireland)
Sean M. O'Flaherty, Trinity College Dublin (Ireland)
Werner J. Blau, Trinity College Dublin (Ireland)

Published in SPIE Proceedings Vol. 4876:
Opto-Ireland 2002: Optics and Photonics Technologies and Applications
Vincent Toal; Norman Douglas McMillan; Gerard M. O'Connor; Eon O'Mongain; Austin F. Duke; John F. Donegan; James A. McLaughlin; Brian D. MacCraith; Werner J. Blau, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?