Share Email Print

Proceedings Paper

Markov random field model for 3D left-ventricular motion estimation from tagged MRI
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Magnetic resonance tagging is a technique for measuring heart deformations through creation of a stripe grid pattern on cardiac images. Typically, sets of tag surfaces are encoded in the tissue appearing as dark lines on 2D images. In this paper, we present a Maximum A Posteriori (MAP) framework for detecting tag lines using a Markov random field defined on the lattice generated by uniform sampling of B-spline models in 3D and 4D. In the 3D case, MAP estimation is cast for finding the optimal solid for the tag features present in the current image set given an initial solid from the previous frame. The method also allows the parameters of the solid model including the number of knots and the spline order to be adjusted within the same framework. Fitting can start with a solid with less knots and lower spline order, and proceed to one with more knots and/or higher order so as to achieve more accuracy. The optimal solids obtained from 3D tracking for all the frames in the image sequence are considered a 4D B-spline model with linear time interpolation. The framework is then applied to arrive at a 4D B-spline model with higher order time interpolation. The method has been validated with 5 sets of in-vivo data, comprised of a sum total of 882 short-axis (SA) and long-axis (LA) images.

Paper Details

Date Published: 24 April 2002
PDF: 10 pages
Proc. SPIE 4683, Medical Imaging 2002: Physiology and Function from Multidimensional Images, (24 April 2002); doi: 10.1117/12.463577
Show Author Affiliations
Yasheng Chen, Washington Univ. Medical Ctr. (United States)
Amir A. Amini, Washington Univ. Medical Ctr. (United States)

Published in SPIE Proceedings Vol. 4683:
Medical Imaging 2002: Physiology and Function from Multidimensional Images
Anne V. Clough; Chin-Tu Chen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?