Share Email Print

Proceedings Paper

Comparison of feature reduction techniques for classification of hyperspectral remote-sensing data
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The task of the analysis of hyperspectral data, due to their high spectrla reolution, requires dealing with the problem of the curse of dimenioality. Many feature selection/extraction techniques have been developed, which map the hyperdimensional feature space in a lower-dimensional space, based on the optimization of a suitable criterion function. This paper studies the impact of several such techniques and of the criterion chosen on the accuracy of different supervised classifiers. The compared methods are the 'Sequential Forward Selection' (SFS), the 'Steepest Ascent' (SA), the 'Fast Constrained Search' (FCS), the 'Projection Pursuit' (PP) and the 'Decision Boundary Feature Extraction' (DBFE), while the considered criterion functions are standard interclass distance measures. SFS is well known for its conceptual and computational simplicity. SA provides more effective subsets of selected features at the price of a higher computational cost. DBFE is an effective transformation technque, usually applied after a preliminary feature-space reduction through PP. The experimental comparison is performed on an AVIRIS hyperspectral data set characterized by 220 spectral bands and nine ground cover classes. The computational time of each algorithm is also reported.

Paper Details

Date Published: 13 March 2003
PDF: 12 pages
Proc. SPIE 4885, Image and Signal Processing for Remote Sensing VIII, (13 March 2003); doi: 10.1117/12.463524
Show Author Affiliations
Sebastiano Bruno Serpico, Univ. degli Studi di Genova (Italy)
Massimo D'Inca, Univ. degli Studi di Genova (Italy)
Farid Melgani, Univ. degli Studi di Trento (Italy)
Gabriele Moser, Univ. degli Studi di Genoa (Italy)

Published in SPIE Proceedings Vol. 4885:
Image and Signal Processing for Remote Sensing VIII
Sebastiano B. Serpico, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?