Share Email Print

Proceedings Paper

Pattern recognition in hyperspectral images using feedback
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An important aspect of hyperspectral pattern recognition is selecting a subset of bands to perform the classification. This is generally necessary because the statistical algorithms on which classification is based need probabilistic estimates to work. The great number of spectral bands in hyperspectral images means that there is not enough data to accurately perform these estimates. In typical hyperspectral pattern recognition, the band selection and classification stages are done separately. This paper presents research done with an iterative system that integrates the band selection and classification. The objective is to choose an optimal subgroup of bands by maximizing the distance between the centroids of the classified data. The results of the study show that: (1) the algorithm correctly chooses the best bands based on centroid separability with synthetic data, (2) the system converges, and (3) the percentage of samples classified correctly using the iterative system is greater than the percentage using all the bands.

Paper Details

Date Published: 13 March 2003
PDF: 8 pages
Proc. SPIE 4885, Image and Signal Processing for Remote Sensing VIII, (13 March 2003); doi: 10.1117/12.463518
Show Author Affiliations
Shawn D. Hunt, Univ. de Puerto Rico/Mayaguez (Puerto Rico)
Diego Rivera, Univ. de Puerto Rico/Mayaguez (Puerto Rico)

Published in SPIE Proceedings Vol. 4885:
Image and Signal Processing for Remote Sensing VIII
Sebastiano B. Serpico, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?