Share Email Print

Proceedings Paper

Electric-field integral equation model for transient GPR antennas
Author(s): A. A. Lestari; Alexander G. Yarovoy; Leo P. Ligthart
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper we present the electric field integral equation (EFIE) method for the analysis of transient metallic antennas above a lossy half-space. This formulation is suitable for the analysis of a wide class of metallic GPR antennas that does not contain any dielectric material. Ground influence is properly taken into account by the Green's function for layered media. The EFIE is solved numerically by the method of moments using the wellknown Rao-Wilton-Glisson basis function. For GPR antennas, the free-space Green's function is replaced by the dyadic Green's function for layered media. The time-domain solution for transient antennas is obtained using Fourier transform method and a time-window technique. By using time window to remove reflections from antenna open ends, the solution for transient antennas is obtained. To speed up computations, several approaches are used, which include the exploitation of antenna symmetry, a special treatment for integration over singularity, and an interpolation method to expedite the evaluation of Sommerfeld integrals. We have found that those approaches allow rapid and accurate computations for obtaining the time-domain solution. Good agreement between the computation and measurement of the input impedance of a wire dipole and a wire bow-tie antenna is obtained.

Paper Details

Date Published: 12 April 2002
PDF: 6 pages
Proc. SPIE 4758, Ninth International Conference on Ground Penetrating Radar, (12 April 2002); doi: 10.1117/12.462192
Show Author Affiliations
A. A. Lestari, Delft Univ. of Technology (Netherlands)
Alexander G. Yarovoy, Delft Univ. of Technology (Netherlands)
Leo P. Ligthart, Delft Univ. of Technology (Netherlands)

Published in SPIE Proceedings Vol. 4758:
Ninth International Conference on Ground Penetrating Radar
Steven Koppenjan; Hua Lee, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?