Share Email Print

Proceedings Paper

Quantitative Doppler ultrasound-based determination of volumetric blood flow
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Conventional ultrasound Doppler velocity measurements are scaled by the cosine of the angle between the blood flow axis and ultrasound beam axis. In the approach used here, a transducer array was used to acquire a first cross-sectional Doppler data set of the vessel under examination. The transducer array was then moved to a different angle to acquire a second cross-sectional Doppler data set. Thereafter, we used the known angle between the two arrays ultrasound beams and the cosine (theta) scaled Doppler estimates to solve for the true angle between the blood flow axis and ultrasound beam axis of the first data set. Upon integrating the angle corrected velocity estimates over the entire vessel cross-section, we were able to estimate blood volume flow rate. The performance of the new approach was tested in a flow phantom that was designed to provide a constant flow in a simulated vessel. The data were collected for two sets of angles and three different flow velocities for each angle set. The unknown Doppler angle was calculated from the data and used to correct the flow velocity.

Paper Details

Date Published: 11 April 2002
PDF: 11 pages
Proc. SPIE 4687, Medical Imaging 2002: Ultrasonic Imaging and Signal Processing, (11 April 2002); doi: 10.1117/12.462155
Show Author Affiliations
Jun S. Ha, Univ. of Virginia (United States)
John A. Hossack, Univ. of Virginia (United States)

Published in SPIE Proceedings Vol. 4687:
Medical Imaging 2002: Ultrasonic Imaging and Signal Processing
Michael F. Insana; William F. Walker, Editor(s)

© SPIE. Terms of Use
Back to Top