Share Email Print

Proceedings Paper

New approach to enclosure design for large telescopes
Author(s): David J. Halliday; Michael H. Gedig; Walter Brzezik; Paul Evans; Ye Zhou
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An enclosure design concept is proposed for a large ground-based optical telescope in the 20- to 30-metre class. The proposed configuration differs from the enclosures for existing large telescopes. Current large telescope enclosure designs have inherent inefficiencies which may be substantially magnified if these designs are scaled. Dynamic analysis studies show that motion requirements for the mechanical components of existing enclosures may be too stringent for next-generation enclosures and that these requirements should be revisited. The proposed enclosure design uses a spherical base structure with a rotating inclined cap. This design improves upon some of the mechanical, structural and operational inefficiencies of current spherical enclosures with conventional shutters. The design also offers potential advantages in the protection of the telescope from wind buffeting forces. Wind loading is expected to be one of the most significant factors governing the design of a next-generation large telescope. The enclosure design includes features which are expected to improve the air flow characteristics in and around the enclosure. Preliminary computational fluid dynamics (CFD) studies have been performed in order to analyze the effect of various enclosure details and components on the flow patterns. Future comparative and detailed CFD studies on the enclosure and telescope are proposed. A plan for practical validation of the results of CFD analysis is presented, in order to better understand the benefits of CFD in predicting the effects of wind buffeting on next-generation large telescopes.

Paper Details

Date Published: 30 January 2003
PDF: 10 pages
Proc. SPIE 4840, Future Giant Telescopes, (30 January 2003); doi: 10.1117/12.457988
Show Author Affiliations
David J. Halliday, AMEC Dynamic Structures, Ltd. (United States)
Michael H. Gedig, AMEC Dynamic Structures, Ltd. (United States)
Walter Brzezik, AMEC Dynamic Structures, Ltd. (Canada)
Paul Evans, AMEC Dynamic Structures, Ltd. (Canada)
Ye Zhou, AMEC Dynamic Structures, Ltd. (Canada)

Published in SPIE Proceedings Vol. 4840:
Future Giant Telescopes
J. Roger P. Angel; Roberto Gilmozzi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?