Share Email Print

Proceedings Paper

Laser beam bending of metallic foils
Author(s): Manfred Geiger; Frank Meyer-Pittroff
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The increasing miniaturization, especially in mass production of electronic and mechatronic devices demands for new technologies for forming, handling and assembly of micro components. Contactless laser beam forming without application of any exterior forces may be such a means. Potential applications for laser forming of micro parts can be found where the introduction of exterior forces or bending moments into the component causes a problem due to its small geometric dimensions, where further handling after the forming process may damage the component or, where a forming step is not required until after the assembly. Contactless laser forming may serve as a solution for high precision manipulation of functional electronic or optical devices or for tuning forces as in relays-springs. Desired changes in position may be in the sub-micrometer range. Due to its extremely short pulse duration, the excimer laser is suited for applying a temperature gradient over the cross section of even very thin metals plates, thus leading to their bending. However, beside thermal mechanisms also non- thermal mechanical effects are responsible for laser beam bending of very thin metal plates by excimer laser irradiation, when irradiating with fluences above the ablation threshold.

Paper Details

Date Published: 25 February 2002
PDF: 4 pages
Proc. SPIE 4426, Second International Symposium on Laser Precision Microfabrication, (25 February 2002); doi: 10.1117/12.456823
Show Author Affiliations
Manfred Geiger, Univ. of Erlangen-Nuremberg (Germany)
Frank Meyer-Pittroff, Univ. of Erlangen-Nuremberg (Germany)

Published in SPIE Proceedings Vol. 4426:
Second International Symposium on Laser Precision Microfabrication
Isamu Miyamoto; Yong Feng Lu; Koji Sugioka; Jan J. Dubowski, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?