Share Email Print

Proceedings Paper

Photonics applications in high-capacity data link terminals
Author(s): Zan Shi; James J. Foshee
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Radio systems and, in particular, RF data link systems are evolving toward progressively more bandwidth and higher data rates. For many military RF data link applications the data transfer requirements exceed one Gigabit per second. Airborne collectors need to transfer sensor information and other large data files to ground locations and other airborne terminals, including the rel time transfer of files. It is a challenge to the system designer to provide a system design, which meets the RF link budget requirements for a one Gigabit per second data link; and there is a corresponding challenge in the development of the terminal architecture and hardware. The utilization of photonic circuitry and devices as a part of the terminal design offers the designer some alternatives to the conventional RF hardware design within the radio. Areas of consideration for the implementation of photonic technology include Gigabit per second baseband data interfaces with fiber along with the associated clocking rates and extending these Gigabit data rates into the radio for optical processing technology; optical interconnections within the individual circuit boards in the radio; and optical backplanes to allow the transfer of not only the Gigabit per second data rates and high speed clocks but other RF signals within the radio. True time delay using photonics in phased array antennas has been demonstrated and is an alternative to the conventional phase shifter designs used in phased array antennas, and remoting of phased array antennas from the terminal electronics in the Ku and Ka frequency bands using fiber optics as the carrier to minimize the RF losses, negate the use of the conventional waveguides, and allow the terminal equipment to be located with other electronic equipment in the aircraft suitable for controlled environment, ready access, and maintenance. The various photonics design alternatives will be discussed including specific photonic design approaches. Packaging, performance, and affordability of the various design alternatives will also be discussed.

Paper Details

Date Published: 27 December 2001
PDF: 7 pages
Proc. SPIE 4490, Multifrequency Electronic/Photonic Devices and Systems for Dual-Use Applications, (27 December 2001); doi: 10.1117/12.455410
Show Author Affiliations
Zan Shi, Radiant Photonics, Inc. (United States)
James J. Foshee, Air Force Research Lab. (United States)

Published in SPIE Proceedings Vol. 4490:
Multifrequency Electronic/Photonic Devices and Systems for Dual-Use Applications
Paul S. Idell; Andrew R. Pirich; Stanley R. Czyzak; Paul L. Repak; Paul S. Idell; Stanley R. Czyzak, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?