Share Email Print

Proceedings Paper

Propagation of variances in belief networks
Author(s): Richard E. Neapolitan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The belief network is a well-known graphical structure for representing independencies in a joint probability distribution. The methods, which perform probabilistic inference in belief networks, often treat the conditional probabilities which are stored in the network as certain values. However, if one takes either a subjectivistic or a limiting frequency approach to probability, one can never be certain of probability values. An algorithm should not only be capable of reporting the probabilities of the outcomes of remaining nodes when other nodes are instantiated; it should also be capable of reporting the uncertainty in these probabilities relative to the uncertainty in the probabilities which are stored in the network. In this paper a method for determining the variances in inferred probabilities is obtained under the assumption that a posterior distribution ont eh uncertainty variables can be approximated by the prior distribution. It is shown that this assumption is plausible if their is a reasonable amount of confidence in the probabilities which are stored in the network.

Paper Details

Date Published: 1 March 1991
PDF: 12 pages
Proc. SPIE 1468, Applications of Artificial Intelligence IX, (1 March 1991); doi: 10.1117/12.45477
Show Author Affiliations
Richard E. Neapolitan, Northeastern Illinois Univ. (United States)

Published in SPIE Proceedings Vol. 1468:
Applications of Artificial Intelligence IX
Mohan M. Trivedi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?