Share Email Print

Proceedings Paper

Modeling ultraviolet-B radiation in a maize canopy
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A decrease in stratospheric ozone may result in a serious threat to plants, since biologically active short-wavelength ultraviolet-B (UVB 280-320 nm) radiation will increase even with a relatively small decrease in ozone. Experimental work has shown that various cultivars and species respond to UVB in different ways. To determine the physiological effects on plants of any increases in UVB radiation, the irradiances at the potential sensitive plant surface need to be known. Numerical models are needed to calculate UVB irradiance. This paper compares spatially and temporally averaged measurements of UVB canopy transmittance (Tcanopy, irradiance below canopy/irradiance above canopy) to that predicted by three models. Maize was selected as the canopy for the study because direct measurements of leaf area and leaf angle distribution are manageable. The models can be applied to other plants including urban trees, though other methods of characterizing leaf area and angle distributions generally would be used. Using measurements of canopy parameters as inputs to the numerical scheme, the models attempt to simulate the UVB Tcanopy that the UVB sensors measure. The purpose of this paper is: (1) to describe the models developed for calculating UVB irradiances (as measured by UVB Tcanopy) at given positions in maize canopies; and (2) to report the results of experimental tests of the models.

Paper Details

Date Published: 17 January 2002
PDF: 13 pages
Proc. SPIE 4482, Ultraviolet Ground- and Space-based Measurements, Models, and Effects, (17 January 2002); doi: 10.1117/12.452943
Show Author Affiliations
Wei Gao, Colorado State Univ./U.S. Dept. of Agriculture (United States)
Richard H. Grant, Purdue Univ. (United States)
Gordon M. Heisler, U.S. Dept. of Agriculture Forest Service (United States)
James R. Slusser, Colorado State Univ./U.S. Dept. of Agriculture (United States)

Published in SPIE Proceedings Vol. 4482:
Ultraviolet Ground- and Space-based Measurements, Models, and Effects
James R. Slusser; Jay R. Herman; Wei Gao, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?