Share Email Print

Proceedings Paper

Organic light-emitting diodes containing fluorinated asymmetrical europium cored beta-diketone complexes
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Novel luminescent materials based on europium-cored complexes have been synthesized and incorporated into light emitting diodes using poly (N-vinyl-carbazole) and poly (vinyl naphthalene) blends as doping hosts. The complexes consists of fluorinated β-diketone ligands chelated to europium. Excitation of the ligands and efficient transfer of energy from the excited ligands to the metal core results in the emission of optically pure red light. The ligands were designed such that they include a polycyclic aromatic compound, phenanthrene, and a second substituent to improve processibility. Phenanthrene is used to so that the ligand energy will match with the energy of the metal center. Partially fluorinated substituents were also used to help improve the efficiency and charge transfer capability of the resulting metal complex. The complex consisted of one equivalent of europium and three equivalents of the ligand. One equivalent of either 1,10-phenanthroline or 4,7-diphenyl-1,10-phenanthroline was also chelated to enhance the stability of the complex. Double and triple layer devices were synthesized with the configuration of ITO/BTPD-PFCB/Europium complex in a polymer blend/Ca/Ag for the double layer device and ITO/BTPD-PFCB/Europium complex in a polymer blend/PBD/Ca/Ag for the triple layer device. The double layer devices made with a polymer blend of PVN outperformed the devices made from PVK as the emission bands of the PVN better match the absorption bands of the ligands. A maximum brightness of 178 cd/m2 with a maximum external quantum efficiency of 0.45% was measured for the double layer device.

Paper Details

Date Published: 3 March 2003
PDF: 10 pages
Proc. SPIE 4800, Organic Light-Emitting Materials and Devices VI, (3 March 2003); doi: 10.1117/12.451879
Show Author Affiliations
Gregory D. Phelan, Univ. of Washington (United States)
Brenden Carlson, Univ. of Washington (United States)
Xuezhong Jiang, Univ. of Washington (United States)
Alex K.Y. Jen, Univ. of Washington (United States)
Larry Raymond Dalton, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 4800:
Organic Light-Emitting Materials and Devices VI
Zakya H. Kafafi; Homer Antoniadis, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?