Share Email Print

Proceedings Paper

Constrained detectors for hyperspectral remote sensing applications: theory versus practice
Author(s): David B. Marden; Dimitris G. Manolakis
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The ability to detect man-made materials with known spectral signatures in hyperspectral images has many important applications. In this paper, we present and compare two, linear mixing model-based, algorithms for the detection of low probability of occurrence targets with known spectral signatures. One involves the estimation of the target abundance in each pixel, a form of spectral unmixing, and the other binary hypothesis testing using the generalized likelihood ratio test (GLRT). In an effort to improve detection, we investigate the effects of placing the Sum-to-One (STO) constraint on the abundances of the materials present in each pixel. Both theoretical and experimental results will be presented such that the benefits of the STO constraint can be directly compared. We shall demonstrate that, in theory, the enforcement of STO constraint improves detection performance. For abundance estimation based detectors, the constraint reduces the variance of the estimate. For GLRT detectors, the STO constraint increases the signal to interference plus noise ratio (SINR). Unfortunately, we do not see the same improvements with real data. In fact, enforcing the constraint leads to a performance degradation, in most cases we have investigated. It turns out that the abundance estimation based detector moves the full pixels, subpixels, and background pixels closer to each other; which makes reliable detection more difficult. With regard to the constrained GLRT detector, there is an introduction of bias to the background pixels, which naturally results to a deterioration in detection performance.

Paper Details

Date Published: 8 November 2002
PDF: 11 pages
Proc. SPIE 4816, Imaging Spectrometry VIII, (8 November 2002); doi: 10.1117/12.451563
Show Author Affiliations
David B. Marden, Northeastern Univ. (United States)
Dimitris G. Manolakis, MIT Lincoln Lab. (United States)

Published in SPIE Proceedings Vol. 4816:
Imaging Spectrometry VIII
Sylvia S. Shen, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?