Share Email Print

Proceedings Paper

Enhancing the accuracy and precision in hyper-Rayleigh scattering: frequency- and angle-resolved femtosecond nonlinear scattering
Author(s): Koen J. Clays; Kurt Wostyn; Andre P. Persoons
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Hyper-Rayleigh scattering, or second-order nonlinear incoherent scattering, has become a standard technique for the experimental determination of the molecular second-order nonlinear optical polarizability, or first hyperpolarizability, of nonlinear optical chromophores in solution. We review the different contributions to the hyper-Rayleigh signal and discuss the impact on the accuracy of the resulting value for the first hyperpolarizability. Especially incoherent multi-photon fluorescence and coherent second-harmonic generation deserve our attention. Temporal resolution of the response enables the distinction between the immediate scattering and time-delayed fluorescence. This has been implemented in the Fourier domain, where the fluorescence contribution exhibits a demodulation (a reduction in amplitude) versus the scattering for increasing modulation frequency of the fundamental laser light. By adding the experimental determination of the phase shift as a function of modulation frequency, ana analyzing the demodulation and phase shift simultaneously, the accuracy and the precision of the measurement was increased substantially. In addition, hyper-Rayleigh scattering as a function of incidence angle clearly shows any coherent contribution to the signal. Selected examples show that the analysis as a function of angle and time results in a value that is ultimately completely free of systematic error. A comparative study shows the importance of the improved precision.

Paper Details

Date Published: 7 December 2001
PDF: 12 pages
Proc. SPIE 4461, Linear and Nonlinear Optics of Organic Materials, (7 December 2001);
Show Author Affiliations
Koen J. Clays, Univ. Katholieke Leuven (Belgium)
Kurt Wostyn, Univ. Katholieke Leuven (Belgium)
Andre P. Persoons, Univ. Katholieke Leuven (Belgium)

Published in SPIE Proceedings Vol. 4461:
Linear and Nonlinear Optics of Organic Materials
Manfred Eich; Mark G. Kuzyk, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?