Share Email Print

Proceedings Paper

New method to analyze the perception of size
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In living bodies, the correct perceptual representation of size constancy requires that an object's size appear the same when it changes its location with respect to the observer. At the same time, it is necessary that objects at different locations appear to be the same size if they are. In order to do that, the perceptual system must recover from the stimuli impinging on the individual, from the light falling on the retina, a representation of the relative sizes of objects in the environment. Moreover, at the same time, image perception is related to another type of phenomena. It corresponds to the well known perceptual illusions. To analyze this facts, we propose a system based on a particular arrays of receptive points composed by optical fibers and dummy fibers. The structure is based on the first layers of the mammalians primary visual cortex. At that part of the brain, the neurons located at certain columns, respond to particular directions. This orientation changes in a systematic way as one moves across the cortical surface. In our case, the signals from the above-mentioned array are analyzed and information concerning orientation and size of a particular line is obtained. With this system, the Muelle-Lyer illusion has been studied and some rules to interpret why equal length objects give rise to different interpretations are presented.

Paper Details

Date Published: 7 December 2001
PDF: 10 pages
Proc. SPIE 4472, Applications of Digital Image Processing XXIV, (7 December 2001); doi: 10.1117/12.449742
Show Author Affiliations
Jose Antonio Martin-Pereda, Univ. Politecnica de Madrid (Spain)
Ana P. Gonzalez-Marcos, Univ. Politecnica de Madrid (Spain)

Published in SPIE Proceedings Vol. 4472:
Applications of Digital Image Processing XXIV
Andrew G. Tescher, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?