Share Email Print

Proceedings Paper

Microfabrication of hemispherical polysilicon shells standing on hemispherical cavities
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the current paper, the fabrication process of a novel proposed hemispherical polysilicon shell standing on a hemispherical silicon cavity is demonstrated. This micro-fabrication process combines both bulk and surface micromachining, which include the isotropic wet etching, a novel mask design, the thick photo resist coating and exposure, and high-aspect-ratio curved sacrificial technique. In isotropic wet etching of a hemispherical cavity, the optimal concentration of etchant is experimentally determined along with adequate ultrasonic vibration during wet etching to produce the circle-like of hemispherical cavity. The conventional alignment mark, which will be destroyed during the rather long isotropic wet etching process, is replaced by a novel mask design with the second alignment mark. Also, for a deep hemispherical cavity larger than 100úgm, the traditional photo resist can not be coated on the corner surface well. The thick photo resist, AZ4620, is found to be able to overcome this problem and be successfully exposed all through its bottom surface. Furthermore, the deposited sacrificial layer materials (PSG) on this cavity will usually result in thinner layer near the corner. In addition, the curved gap of PSG layer has the feature with high-aspect-ratio. These make the PSG etching difficult. Therefore, two steps etching process with two different hydrofluoric concentrations are used to release the PSG with 2micrometers thickness and 150micrometers arc length.

Paper Details

Date Published: 21 November 2001
PDF: 11 pages
Proc. SPIE 4592, Device and Process Technologies for MEMS and Microelectronics II, (21 November 2001); doi: 10.1117/12.449010
Show Author Affiliations
Cheng-Hsuan Lin, National Chiao Tung Univ. (Taiwan)
Yi-Chung Lo, Synchrotron Radiation Research Ctr. (Taiwan)
Wensyang Hsu, National Chiao Tung Univ. (Taiwan)

Published in SPIE Proceedings Vol. 4592:
Device and Process Technologies for MEMS and Microelectronics II
Jung-Chih Chiao; Lorenzo Faraone; H. Barry Harrison; Andrei M. Shkel, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?