Share Email Print

Proceedings Paper

Room-temperature luminescence at 1.54 um and other wavelengths from Er-doped Si-rich Si oxide
Author(s): Guogang Qin; Guangzhao Ran; Yuan Chen; Borui Zhang; Yongping Qiao; Jishi Fu
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

SiO2:Si:Er films were deposited on n+-Si substrate using the magnetron sputtering technique, and then Au/ SiO2: Si:Er /n+-Si diodes were fabricated. Both Er3+ photoluminescence (PL) from the SiO2: Si: Er/n+-Si and electroluminescence (EL) from the Au/SiO2: Si: Er /n+-Si diodes were studied. The 1.54 micrometers PL intensity ratio of SiO2: Si: Er/n+-Si to that of the SiO2: Er/n+-Si measured under identical conditions can be as large as ~30. While the 1.54 micrometers EL intensity ratio of an Au/ SiO2:Si:Er/n+-Si diode to that of an Au/SiO2:Er/n+-Si diode measured under identical conditions can be as large as 6. We also deposited nanoscale (SiO2:Er/Si(1.0~4.0nm)/SiO2:Er) sandwich structure, in which the silicon layer between the two SiO2:Er barriers was 1.0~4.0 nm thick with an interval of 0.2 nm, on both n+-Si and p-Si substrates. Each EL spectrum of the Au/nanoscale (SiO2:Er/Si/SiO2:Er)/n+-Si diodes can be fitted by three Gaussian bands with peak energies of 0.757 eV (1.64 micrometers ), 0.806 eV (1.54 micrometers ) and 0.860 eV (1.44 micrometers ), and full widths at half maximum of 0.052, 0.045 and 0.055 eV, respectively. Among the Au/nanoscale (SiO2:Er/Si/SiO2:Er)/n+-Si diodes with the Si layers having various thicknesses, the EL intensities of the 1.64, 1.54 and 1.44 micrometers bands of the diode with a 1.6 nm Si layer attain maxima which are 22, 8 and 7 times larger than those of the control diode without any Si layer (Au/nanoscale SiO2:Er/n+-Si), respectively.

Paper Details

Date Published: 19 October 2001
PDF: 13 pages
Proc. SPIE 4580, Optoelectronics, Materials, and Devices for Communications, (19 October 2001); doi: 10.1117/12.444970
Show Author Affiliations
Guogang Qin, Peking Univ. (China)
Guangzhao Ran, Peking Univ. (China)
Yuan Chen, Peking Univ. (China)
Borui Zhang, Peking Univ. (China)
Yongping Qiao, Peking Univ. (China)
Jishi Fu, Peking Univ. (China)

Published in SPIE Proceedings Vol. 4580:
Optoelectronics, Materials, and Devices for Communications
Tien Pei Lee; Qiming Wang, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?