Share Email Print

Proceedings Paper

Nonlinear regression for signal processing
Author(s): Alfredo Restrepo
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A nonlinear regression is a signal that has a specified property (which may be different from linearity) and that optimally approximates a given signal. Such properties are given in the domain of the signal (e.g. time, space) and are called shape constraints. The optimality of the approximation is measured with a semimetric defined on the space of signals under consideration. Finite-length discrete signals are well modeled as point in n-dimensional real space Rn. Thus, for example, a linear regression of a signal is a signal, in the subspace of linear signals, that is closest (usually under the Euclidean metric) to the given signal. Four shape constraints considered in the paper; piecewise constancy, local monotonicity, piecewise linearity and local convex/concavity. They are constraints of smoothness and in this respect, local convex/concavity has the advantage over local monotonicity that a sine wave of small frequency may be locally concave/convex but not locally monotonic. 2D signals defined on quadrille tessellations and on hexagonal tessellations are considered briefly; local monotonicity of degree 3 is defined for 2D signals. A technique for obtaining locally monotonic approximations of 2D signals is presented.

Paper Details

Date Published: 1 April 1991
PDF: 11 pages
Proc. SPIE 1451, Nonlinear Image Processing II, (1 April 1991); doi: 10.1117/12.44332
Show Author Affiliations
Alfredo Restrepo, Univ. de los Andes (Colombia)

Published in SPIE Proceedings Vol. 1451:
Nonlinear Image Processing II
Edward R. Dougherty; Gonzalo R. Arce; Charles G. Boncelet Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?