Share Email Print

Proceedings Paper

Biomedical applications of laser photoionization
Author(s): Xiaoxiong Xiong; Larry J. Moore; John R. Fassett; Thomas C. O'Haver
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Trace elements are important for many essential metabolic functions. Zinc is a structural/functional component in more than 200 enzymes active in the biochemistry of cell division and tissue growth, neurology and endocrine control. Calcium is involved in intracellular control mechanisms and in skeletal bone building and resorption processes related to osteoporosis. Sensitive and selective laser photoionization is being developed to understand mechanisms in smaller samples and biological units approaching the cellular domain. Zinc has an ionization potential of 9.4 eV, or 75766.8 cm-1. Several processes are being explored, including two-photon resonant, three- photon ionization utilizing sequential UV transitions, e.g., 4s2 1S0 yields 4s4p 3P1 and 4s4p 3P1 yields 4s5d 3D1. Preliminary zinc stable isotope ratio data obtained by thermal atomization and laser photoionization agree with accepted values within 2 to 5%, except for anomalous 67Zn. Photoionization of calcium is being studied for isotope enrichment and ratio measurement using narrow and medium bandwidth lasers. Several ionization pathways, e.g., 4s2 1S0 - 2hv1 yields 4s10s - hv2 yields Ca+ (4s2S), are being investigated for isotopically selective ionization. Auto-ionization pathways are explored for greater efficiency in isotopic analysis. All studies have utilized a Nd:YAG- pumped laser system with one or two frequency-doubled tunable dye lasers coupled either to a magnetic sector or time-of-flight mass spectrometer.

Paper Details

Date Published: 1 July 1991
PDF: 9 pages
Proc. SPIE 1435, Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications, (1 July 1991); doi: 10.1117/12.44243
Show Author Affiliations
Xiaoxiong Xiong, Eastern Analytical Labs., Inc. (United States)
Larry J. Moore, Eastern Analytical Labs., Inc. (United States)
John R. Fassett, National Institute of Standards and Technology (United States)
Thomas C. O'Haver, Univ. of Maryland (United States)

Published in SPIE Proceedings Vol. 1435:
Optical Methods for Ultrasensitive Detection and Analysis: Techniques and Applications
Bryan L. Fearey, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?