Share Email Print

Proceedings Paper

Novel radio-frequency technology (Coblation) for dermatologic surgery applications
Author(s): Duran N. Yetkinler M.D.; Andre Bessette; Jean Woloszko
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Laser energy has been shown to be effective in skin resurfacing and other dermatologic surgery procedures, but it operates at relatively high temperatures (200-600°C). Lasers produce mid-to far-infrared energy that is absorbed primarily by tissue water and peptide bonds. The resulting localized tissue heating and vaporization produces tissue ablation with a residual thermal injury to the lower dermis. Traditional radiofrequency (RF) devices also use extreme heat (400-600 °C) to abruptly vaporize intracellular and extracellular fluids and cause tissue desiccation. In contrast, a new technology, Coblation®, utilizes a unique method of delivering RF energy for soft tissue removal applications in medicine, including dermatological surgery. Coblation uses bipolar wands to energize the particles in a conductive saline solution surrounding the target tissue to form a plasma field. The plasma has enough energy to break the tissue’s molecular bonds, creating an ablative path with minimal thermal effects (45-90 °C). Collateral tissue damage and tissue healing were investigated in several clinical studies, and compared to those observed with conventional electrosurgery. There was significantly less collateral tissue damage, less inflammation, and faster wound healing in Coblation-treated tissues. In a multicenter clinical study, Coblation was used for skin resurfacing for the treatment of facial wrinkles and provided statistically significant wrinkle improvement. When compared to CO2 laser, the decreased thermal effects of Coblation has led to less pain and faster recovery for most patients, yet the effect was enough to both stimulate new collagen production and to shrink collagen fibers. Coblation has the potential to be applied in most procedures where lasers have been used in the past in cosmetic and dermatological applications.

Paper Details

Date Published: 17 June 2002
PDF: 8 pages
Proc. SPIE 4609, Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII, (17 June 2002); doi: 10.1117/12.437297
Show Author Affiliations

Published in SPIE Proceedings Vol. 4609:
Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems XII
Lawrence S. Bass M.D.; Eugene A. Trowers M.D.; Kenneth Eugene Bartels D.V.M.; Udayan K. Shah M.D.; David S. Robinson M.D.; Lawrence S. Bass M.D.; Kenton W. Gregory M.D.; Kenneth Eugene Bartels D.V.M.; Lawrence S. Bass M.D.; Brian Jet-Fei Wong M.D.; Hans-Dieter Reidenbach; Lloyd P. Tate V.D.M.; Nikiforos Kollias; Abraham Katzir; Timothy A. Woodward M.D.; Werner T.W. de Riese; George M. Peavy D.V.M.; Werner T.W. de Riese; Kenton W. Gregory M.D.; Michael D. Lucroy D.V.M.; Abraham Katzir; Nikiforos Kollias; Michael D. Lucroy D.V.M.; Reza S. Malek M.D.; George M. Peavy; Hans-Dieter Reidenbach; David S. Robinson M.D.; Udayan K. Shah M.D.; Lloyd P. Tate V.D.M.; Eugene A. Trowers M.D.; Brian Jet-Fei Wong M.D.; Timothy A. Woodward M.D., Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?