Share Email Print

Proceedings Paper

Characterization of gaseous effluents from modeling of LWIR hyperspectral measurements
Author(s): Michael K. Griffin; John P. Kerekes; Kristine E. Farrar; Hsiao-hua K. Burke
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Longwave Infrared (LWIR) radiation comprising atmospheric and surface emissions provides information for a number of applications including atmospheric profiling, surface temperature and emissivity estimation, and cloud depiction and characterization. The LWIR spectrum also contains absorption lines for numerous molecular species which can be utilized in quantifying species amounts. Modeling the absorption and emission from gaseous species using various radiative transfer codes such as MODTRAN-4 and FASE (a follow-on to the line-by-line radiative transfer code FASCODE) provides insight into the radiative signature of these elements as viewed from an airborne or space-borne platform and provides a basis for analysis of LWIR hyperspectral measurements. In this study, a model platform was developed for the investigation of the passive outgoing radiance from a scene containing an effluent plume layer. The effects of various scene and model parameters including ambient and plume temperatures, plume concentration, as well as the surface temperature and emissivity on the outgoing radiance were estimated. A simple equation relating the various components of the outgoing radiance was used to study the scale of the component contributions. A number of examples were given depicting the spectral radiance from plumes composed of single or multiple effluent gases as would be observed by typical airborne sensors. The issue of detectability and spectral identification was also discussed.

Paper Details

Date Published: 20 August 2001
PDF: 10 pages
Proc. SPIE 4381, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, (20 August 2001); doi: 10.1117/12.437026
Show Author Affiliations
Michael K. Griffin, MIT Lincoln Lab. (United States)
John P. Kerekes, MIT Lincoln Lab. (United States)
Kristine E. Farrar, MIT Lincoln Lab. (United States)
Hsiao-hua K. Burke, MIT Lincoln Lab. (United States)

Published in SPIE Proceedings Vol. 4381:
Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII
Sylvia S. Shen; Michael R. Descour, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?