Share Email Print

Proceedings Paper

On-board processing for the COMPASS
Author(s): Christopher G. Simi; Edwin M. Winter; Michael J. Schlangen; Anthony B. Hill
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The Compact Airborne Spectral Sensor (COMPASS) is a hyperspectral sensor covering the 400 to 2350 nm spectral region using a single focal plane and a very compact optical system. In addition, COMPASS will include a high-resolution panchromatic imager. With its compact design and its full spectral coverage throughout the visible, near infrared and SWIR, COMPASS represents a major step forward in the practical utilization of hyperspectral sensors for military operations. COMPASS will be deployed on a variety of airborne platforms for the detection of military objects of interest. There was considerable interest in the development of an on-board processor for COMPASS. The purpose of this processor is to calibrate the data and detect military targets in complex background clutter. Because of their ability to operate on truly hyperspectral data consisting of a hundred or more bands, linear unmixing algorithms were selected for the detection processor. The N-FINDR algorithm that automatically finds endmembers and then unmixes the scene was selected for real-time implementation. In addition, a recently developed detection algorithm, Stochastic Target Detection (STD), which was specifically designed for compatibility with linear unmixing algorithms, was chosen for the detection step. The N-FINDR/STD algorithm pair was first tested on a variety of hyperspectral data sets to determine its performance level relative to existing hyperspectral algorithms (such as RX) using Receiver Operator Curves (ROC) as the basis. Following completion of the testing, a hardware implementation of a real time processor for COMPASS using commercial off-the-shelf computer technology was designed. The COMPASS on-board processor will consist of the following elements: preprocessing, N-FINDR endmember determination and linear unmixing, the STD target detection step, and the selection of a High Resolution Image Chip covering the target area. Computer resource projections have shown that these functions, along with supporting interactive display functions, can operate in real-time on COMPASS data using multi-processor Pentium III class processors.

Paper Details

Date Published: 20 August 2001
PDF: 6 pages
Proc. SPIE 4381, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, (20 August 2001); doi: 10.1117/12.437001
Show Author Affiliations
Christopher G. Simi, U.S. Army Night Vision & Electronic Sensors Directorate (United States)
Edwin M. Winter, Technical Research Associates, Inc. (United States)
Michael J. Schlangen, Technical Research Associates, Inc. (United States)
Anthony B. Hill, U.S. Army Night Vision & Electronic Sensors Directorate (United States)

Published in SPIE Proceedings Vol. 4381:
Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII
Sylvia S. Shen; Michael R. Descour, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?