Share Email Print

Proceedings Paper

Three-dimensional real-time ultrasonic imaging using ellipsoidal backprojection
Author(s): Forrest L. Anderson
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Interest in 3D medical imaging continues to increase. However, in ultrasound, real-time imaging is an indispensable strength; and real-time 3D ultrasonic imaging is not practical when conventional steered, focused beam techniques are used. This is because the speed of sound severely limits the size of the volume that can be imaged in real time. For real-time 3D imaging, approaches like simultaneous multiple beams or holography have been considered but never commercially implemented for, in part, the following reasons: A new 3D ultrasound technology should provide the convenience of a hand-held scan head, should yield real-time 3D images, and should provide 2D images with quality equal to, or greater than, presently available 2D ultrasound images. Convenient size and a reasonable price are also requirements. In this paper, a 3D ultrasonic imaging method with the potential to meet the above criteria is described. It may also provide even higher quality 2D ultrasound images than are presently available. The new method relates more closely to computed tomography than to focused steered beams. It, however, uses projections and back-projections over 3D ellipsoids rather than straight lines; and it does this in a simple straight forward manner. Implementation in software of filtered ellipsoidal back-projection is described, resolution and side lobes are discussed, and examples of the 3D point image (re. point spread function) are given.

Paper Details

Date Published: 1 July 1991
PDF: 19 pages
Proc. SPIE 1443, Medical Imaging V: Image Physics, (1 July 1991); doi: 10.1117/12.43431
Show Author Affiliations
Forrest L. Anderson, Impulse Imaging Corp. (United States)

Published in SPIE Proceedings Vol. 1443:
Medical Imaging V: Image Physics
Roger H. Schneider, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?