Share Email Print

Proceedings Paper

Probing specific DNA sequences with luminescent semiconductor quantum dots
Author(s): Jason R. Taylor; Shuming Nie
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The development of new fluorescent probes has impacted many areas of research such as medical diagnostics, high-speed drug screening, and basic molecular biology. Main limitations to traditional organic fluorophores are their relatively weak intensities, short life times (eg., photobleaching), and broad emission spectra. The desire for more intense fluorescent probes with higher quality photostability and narrow emission wavelengths has led to the development and utilization of semiconductor quantum dots as a new label. In this work, we have modified semicondutor quantum dots (QD's) with synthetic oligonucleotides to probe a specific DNA target sequence both in solution as well as immobilized on a solid substrate. In the first approach, specific target sequences are detected in solution by using short oligonucleotide probes, which are covalently linked to semiconductor quantum dots. In the second approach, DNA target sequences are covalently attached to a glass substrate and detected using oligonucleotides linked to semiconductor quantum dots.

Paper Details

Date Published: 18 June 2001
PDF: 9 pages
Proc. SPIE 4258, Nanoparticles and Nanostructured Surfaces: Novel Reporters with Biological Applications, (18 June 2001); doi: 10.1117/12.430769
Show Author Affiliations
Jason R. Taylor, Indiana Univ. (United States)
Shuming Nie, Indiana Univ. (United States)

Published in SPIE Proceedings Vol. 4258:
Nanoparticles and Nanostructured Surfaces: Novel Reporters with Biological Applications
Catherine J. Murphy, Editor(s)

© SPIE. Terms of Use
Back to Top