Share Email Print

Proceedings Paper

Ultrahigh-velocity resolution imaging of the microcirculation in-vivo using color Doppler optical coherence tomography
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Color Doppler optical coherence tomography (CDOCT) is a method for noninvasive cross-sectional imaging of blood flow in vivo. In previous implementations, velocity estimates were obtained by measuring the frequency shift of discrete depth-resolved backscatter spectra, resulting in a velocity resolution on the order of 1 mm/s. We present a novel processing method that detects Doppler shifts calculated across sequential axial scans, enabling ultrahigh velocity resolution (~1 micron/s) flow measurement in scattering media. This method of sequential scan processing was calibrated with a moving mirror mounted on a precision motorized translator. Latex microspheres suspended in deuterium oxide were used as a highly scattering test phantom. Laminar flow profiles down to ~15 micron/s centerline velocity (0.02 cc/hr) were observed with a sensitivity of 1.2 micron/s. Finally, vessels on the order of 10 microns in diameter were imaged in living human skin, with a relative frequency sensitivity less than 4 x 10-5. To our knowledge, these results are the lowest velocities ever measured with CDOCT.

Paper Details

Date Published: 23 May 2001
PDF: 9 pages
Proc. SPIE 4251, Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V, (23 May 2001); doi: 10.1117/12.427887
Show Author Affiliations
Siavash Yazdanfar, Case Western Reserve Univ. (United States)
Andrew M. Rollins, Case Western Reserve Univ. (United States)
Joseph A. Izatt, Case Western Reserve Univ. (United States)

Published in SPIE Proceedings Vol. 4251:
Coherence Domain Optical Methods in Biomedical Science and Clinical Applications V
Valery V. Tuchin; Joseph A. Izatt; James G. Fujimoto, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?