Share Email Print

Proceedings Paper

Full-through laser cutting process simulation
Author(s): Markus S. Gross; Ian Black; W. H. Mueller
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

This paper describes the implementation and numerical evaluation of a transient 3D computer simulation of the CO2 laser cutting process. Utilizing Crank-Nicolsen-Finite- Difference equations for the solution of the Fourier heat transfer equation with Newtonian convection, the temperature distribution is predicted. For high accuracy the mesh is of non-equidistant nature, following a Weibull Distribution for the grid spacing. A parallel computation solver is used, based on Divide-and-Conquer Gaussian elimination for banded matrices, to calculate the nodal temperatures using a cluster of two HP J5000 workstations. Included in the solution is the behavior of the material during phase change, while the open structure of the developed software allows incorporation of effects such as surface oxidation, radiation and limited convective flow. The main area of interest is the cutting capability with respect to varying material thickness, cutting speed, power of the laser, laser mode, focal spot diameter and material properties, as well as the effect of these parameters on the quality of the cut.

Paper Details

Date Published: 23 April 2001
PDF: 4 pages
Proc. SPIE 4424, ECLIM 2000: 26th European Conference on Laser Interaction with Matter, (23 April 2001); doi: 10.1117/12.425602
Show Author Affiliations
Markus S. Gross, Heriot-Watt Univ. (United Kingdom)
Ian Black, Heriot-Watt Univ. (United Kingdom)
W. H. Mueller, Heriot-Watt Univ. (United Kingdom)

Published in SPIE Proceedings Vol. 4424:
ECLIM 2000: 26th European Conference on Laser Interaction with Matter
Milan Kalal; Karel Rohlena; Milan Sinor, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?