Share Email Print

Proceedings Paper

MEMS and the cell: how nature creates microscale motion
Author(s): Gerald H. Pollack
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For those working in the MEMS field, creating microscale motion with improved functionality and efficacy is the challenge ahead. This challenge can be met through biomimetics—imitating nature. Nature, after all, has had almost four billion years to perfect its mastery, whereas MEMS engineers and chemists have been at it for no more than a few decades. Nature's solution to the challenge of microscale movement appears to be the polymer-gel phase-transition. The cytoplasm is a gel—it exhibits all ofthe gels' signature characteristics. By undergoing phase-transition, gels generate both solvent and solute movement. It is argued that cells do the same. Two examples are given: the secretory system and the muscle-contraction system. In each case it is shown that the characteristic motions are created as proteins and water undergo transition from an expanded, hydrated state to a contracted, dehydrated state. This transition displaces solutes and solvent. By exploiting these natural principles, MEMS may have the capacity to generate microscale motions of unprecedented efficacy and simplicity.

Paper Details

Date Published: 21 March 2001
PDF: 19 pages
Proc. SPIE 4235, Smart Structures and Devices, (21 March 2001); doi: 10.1117/12.420866
Show Author Affiliations
Gerald H. Pollack, Univ. of Washington (United States)

Published in SPIE Proceedings Vol. 4235:
Smart Structures and Devices
Dinesh K. Sood; Ronald Albert Lawes; Vasundara V. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?