Share Email Print

Proceedings Paper

Real-time detection of bacterial aerosols by fiber optic-based biosensors
Author(s): An-Cheng Chang; Mary Beth Tabacco
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A new approach is presented for real-time detection of bacterial aerosols using a sensing film configured on optical fibers. The sensing film contains nucleic acid-reactive fluorophores immobilized in hydrophilic polymers such as carboxymethylcellulose. Detection is based on changes in the fluorescence emission as a function of cell number deposited on the sensor. The sample is introduced using a nebulizer and the fiber probe, with the sensing film was placed directly inside a bioaerosol chamber. The sensor shows real-time responses to pulses of aerosolized bacteria such as Pseudomonas aeruginosa. The signals from the sensor are dependent on the humidity in the chamber. We have demonstrated that at lower humidities the ithegrated intensity does not provide a clear indication of the presence of bacterial aerosol. However, ftirther analysis shows that the intensity ratio at different wavelengths, for example I525/I560 or I505/I560, does correlate with bacteria concentration. The present detection limit for aerosolized bacteria is 3000 cells/mm2. To our knowledge, there are no previous reports of real-time detection of bacterial aerosols using the sensing film described here. The sensing film remains stable after storage under desiccation and in the dark for extended periods. The sensor also remains stable at room temperature for many hours after removal from the package.

Paper Details

Date Published: 13 March 2001
PDF: 8 pages
Proc. SPIE 4206, Photonic Detection and Intervention Technologies for Safe Food, (13 March 2001); doi: 10.1117/12.418738
Show Author Affiliations
An-Cheng Chang, Echo Technologies, Inc. (United States)
Mary Beth Tabacco, Echo Technologies, Inc. (United States)

Published in SPIE Proceedings Vol. 4206:
Photonic Detection and Intervention Technologies for Safe Food
Yud-Ren Chen; Shu-I Tu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?