Share Email Print

Proceedings Paper

Mitigation of atmospheric effects in hyperspectral data analysis
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

For hyperspectral data analysis, the general objective for atmospheric compensation algorithms is to remove solar illumination and atmospheric effects from the measured spectral data so that surface reflectance can be retrieved. This then allows for comparison with library data for target identification. Recent advances in spectral sensing capability have led to the development of a number of atmospheric compensation algorithms for hyperspectral data analysis. In this paper, three topics will be discussed: (1) algorithm evaluation of two physics-based approaches: ATREM and the AFRL model, (2) sensitivity analysis of the effects of various input parameters to surface reflectance retrieval, and (3) algorithm enhancements of how water vapor and aerosol retrievals can be better conducted than current algorithms. Examples using existing hyperspectral data, including those from HYDICE, AVIRIS will be discussed. Results will also be compared with truth information derived from ground and satellite based meteorological data.

Paper Details

Date Published: 23 August 2000
PDF: 11 pages
Proc. SPIE 4049, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, (23 August 2000); doi: 10.1117/12.410367
Show Author Affiliations
Hsiao-hua K. Burke, MIT Lincoln Lab. (United States)
Michael K. Griffin, MIT Lincoln Lab. (United States)
J. William Snow, MIT Lincoln Lab. (United States)

Published in SPIE Proceedings Vol. 4049:
Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI
Sylvia S. Shen; Michael R. Descour, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?