Share Email Print

Proceedings Paper

Laser radar vacuum speckle plus atmospheric scintillation: a simple irradiance model
Author(s): Douglas G. Youmans
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A simple analytical model of a laser radar's subtended irradiance probability-density-function has been developed for both direct detection and coherent detection laser radar. The vacuum speckle irradiance statistics are developed following Goodman's 'M parameter' treatment for direct detection ladar and also by setting the M-parameter equal to one (negative- exponential power statistics) for coherent laser radar. A 'turbulence M parameter' is then computed using the round-trip aperture averaging analyses of Gudimetla and Holmes based on the Rytov-variance parameter computation over an atmospheric path of interest. The 'vacuum M parameter' and the 'turbulence M parameter' are then combined to form an 'effective M parameter.' This effective M parameter is used in an analytically simple gamma distribution probability-density- function for the laser radar's subtended irradiance. We will show excellent agreement with the more analytically complicated two-parameter K-distribution from the literature. We will also indicate how one may include the turbulence scintillation in addition to the fundamental vacuum speckle, with increasing levels of turbulence to determine ladar performance.

Paper Details

Date Published: 5 September 2000
PDF: 12 pages
Proc. SPIE 4035, Laser Radar Technology and Applications V, (5 September 2000); doi: 10.1117/12.397802
Show Author Affiliations
Douglas G. Youmans, Schafer Corp. (United States)

Published in SPIE Proceedings Vol. 4035:
Laser Radar Technology and Applications V
Gary W. Kamerman; Upendra N. Singh; Christian Werner; Vasyl V. Molebny, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?