Share Email Print

Proceedings Paper

Hand-held forward-looking focused array mine detection with plane wave excitation
Author(s): Carey M. Rappaport; Stephen G. Azevedo; Tom Rosenbury; Jamie Gough; Dongping Jin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A novel handheld time-domain array GPR antipersonnel mine detection system prototype has been developed. Using an offset paraboloidal reflector antenna to collimate rays form an ultra-wideband feed, the transmitted microwave impulse is concentrated forward, in front of the antenna structure. The resulting wave is a non-uniform plane wave over the portion of ground be investigated, and is incident at 45 degrees to normal. As such, much of the ground reflect wave is directed further forward, away from the operator, the reflector, and the receiving antennas, thereby reducing clutter. However, the wave transmitted into the ground, which interacts with the target, tends to have significant backscatter returning toward the receiving antennas. These receiving antennas are configured in a 2 by 2 array to provide spatial focusing in both along and cross-track directions. This is accomplished by measuring and comparing the backscattered signal at each receiver in the narrow time window between the times when the ground reflected wave passes the receiver and before this wave re-reflects from the reflector components. 2D FDTD simulation of this parabolic reflector transmitter indicates that it generates a beam with a non-uniform planar wavefront, which scatters form rough ground primarily in the forward direction. The wave transmitted into the ground is also planar, propagating at the angle of refraction, and scattering fairly isotropically from a small penetrable target. This system has been built and tested at LLNL, using a very narrow pulse shape. LLNL's Micro-Impulse Radar (MIR) and custom-built wideband antenna elements operate in the 1.5 to 5 GHz range. One particular advantage of using the MIR module is its low cost: an important feature for mine detectors used in developing countries. Preliminary measured data indicates that the surface clutter is indeed reduced relative to the target signal, and that small non-metallic anti-personnel mines can be reliably detected at burial depths as shallow as 1 inch in both dry.

Paper Details

Date Published: 22 August 2000
PDF: 9 pages
Proc. SPIE 4038, Detection and Remediation Technologies for Mines and Minelike Targets V, (22 August 2000); doi: 10.1117/12.396197
Show Author Affiliations
Carey M. Rappaport, Northeastern Univ. (United States)
Stephen G. Azevedo, Lawrence Livermore National Lab. (United States)
Tom Rosenbury, Lawrence Livermore National Lab. (United States)
Jamie Gough, Lawrence Livermore National Lab. (United States)
Dongping Jin, Northeastern Univ. (United States)

Published in SPIE Proceedings Vol. 4038:
Detection and Remediation Technologies for Mines and Minelike Targets V
Abinash C. Dubey; James F. Harvey; J. Thomas Broach; Regina E. Dugan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?