Share Email Print

Proceedings Paper

Three-dimensional silicone microfluidic interconnection scheme using sacrificial wax filaments
Author(s): Saman Dharmatilleke; H. Thurman Henderson; Shekhar Bhansali; Chong Hyuk Ahn
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A very simple room-temperature procedure is presented herein for formation of true three-dimensionality of microplumbing in plastic (silicone elastomer in this case), by molding the plastic to simply encapsulate a pre-formed network of sacrificial wax threads or other connected wax configurations which are ultimately to become micro channels and cavities in the plastic motherboard. When these wax sacrificial areas are etched away with acetone, precise cavities, channels, and capillaries results with direct arbitrary three- dimensionality for the first time. This method leads also to a simple and effective external interconnect scheme where ordinary fused silica tubes may be press-fitted into the surface opening to withstand high pressure. This method may be extended for connection of multiple levels of silicone motherboards together using small sections of fused silica tubing, with no loss of stacking volume because of the lack of any connector lips or bosses. An array of micro channels having circular cross sections with diameters of 100, 150 and 200 microns were molded on silicone elastomer using wax thread. The wax thread was dissolved in acetone after the silicon elastometer became components (motherboards) while being able to control the channel lengths within the stacks as desired. Mixing chambers were also molded in a single silicone elastomer layer, because true three-dimensionality is trivially possible without the complexity of multi stacked lithography.

Paper Details

Date Published: 18 August 2000
PDF: 8 pages
Proc. SPIE 4177, Microfluidic Devices and Systems III, (18 August 2000); doi: 10.1117/12.395676
Show Author Affiliations
Saman Dharmatilleke, Univ. of Cincinnati (United States)
H. Thurman Henderson, Univ. of Cincinnati (United States)
Shekhar Bhansali, Univ. of Cincinnati (United States)
Chong Hyuk Ahn, Univ. of Cincinnati (United States)

Published in SPIE Proceedings Vol. 4177:
Microfluidic Devices and Systems III
Carlos H. Mastrangelo; Holger Becker, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?