Share Email Print

Proceedings Paper

ATR performance of a Rician model for SAR images
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Radar targets often have both specular and diffuse scatterers. A conditionally Rician model for the amplitudes of pixels in Synthetic Aperture Radar (SAR) images quantitatively accounts for both types of scatterers. Conditionally Rician models generalize conditionally Gaussian models by including means with uniformly distributed phases in the complex imagery. Qualitatively, the values of the two parameters in the Rician model bring out different aspects of the images. For automatic target recognition (ATR), log-likelihoods are computed using parameters estimated from training data. Using MSTAR data, the resulting performance for a number of four class ATR problems representing both standard and extended operating conditions is studied and compared to the performance of corresponding conditionally Gaussian models. Performance is measured quantitatively using the Hilbert-Schmidt squared error for orientation estimation and the probability of error for recognition. For the MSTAR dataset used, the results indicate that algorithms based on conditionally Rician and conditionally Gaussian models yield similar results when a rich set of training data is available, but the performance under the Rician model suffers with smaller training sets. Due to the smaller number of distribution parameters, the conditionally Gaussian approach is able to yield a better performance for any fixed complexity.

Paper Details

Date Published: 17 August 2000
PDF: 12 pages
Proc. SPIE 4050, Automatic Target Recognition X, (17 August 2000);
Show Author Affiliations
Michael D. DeVore, Washington Univ. (United States)
Aaron D. Lanterman, Univ. of Illinois/Urbana-Champaign (United States)
Joseph A. O'Sullivan, Washington Univ. (United States)

Published in SPIE Proceedings Vol. 4050:
Automatic Target Recognition X
Firooz A. Sadjadi, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?