Share Email Print

Proceedings Paper

Modeling oblique incidence effects in photomasks
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

As mask features scale to smaller dimensions, the so-called 'vertical effects' which, to present, have mostly been neglected, become important. The usual assumption of constant scattering coefficients for different angles of incidence needs to be reconsidered as the aspect ratio of mask features increases. The use of higher NA systems introduces high obliquity field components that further compound the problem. Rigorous electromagnetic simulation is used to investigate the scattering properties of various lithographic masks. Scattering coefficients are calculated and compared for the classical binary mask, masks with OPC features and phase-shifting masks under wafer printing and inspection conditions. Specific attention is paid to quantifying the limitations of the constant scattering coefficient assumption. An efficient scheme to calculate aerial images in situations with non-constant scattering coefficients is presented. Aerial images calculated with this scheme are compared to aerial images calculated under the constant scattering coefficient assumption. Binary mask with and without OPC are shown to not exhibit scattering dependence on angle of incidence. Phase shift masks require rigorous electromagnetic simulation and some, such as the dual trench, exhibit moderate scattering scattering dependence on the angle of incidence must be considered because of the high angles involved. A tabulated summary of mask simulation is presented in the conclusion.

Paper Details

Date Published: 5 July 2000
PDF: 10 pages
Proc. SPIE 4000, Optical Microlithography XIII, (5 July 2000); doi: 10.1117/12.389012
Show Author Affiliations
Thomas V. Pistor, Univ. of California/Berkeley (United States)
Panoramic Technology (United States)
Andrew R. Neureuther, Univ. of California/Berkeley (United States)
Robert John Socha, ASML MaskTools (United States)

Published in SPIE Proceedings Vol. 4000:
Optical Microlithography XIII
Christopher J. Progler, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?