Share Email Print

Proceedings Paper

Optimization and control of a high-speed electrorheological traversing mechanism
Author(s): Andrew R. Johnson; William A. Bullough; John Makin
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

A high-speed traversing mechanism using two electro- rheological clutches is described. An application of the traversing mechanism is in winding filaments onto bobbins. The traverse speed is 5 m/s; the required turn round period is 10 to 20 milli-seconds; the traverse length is 250 mm; the turn round position must be controllable and repeatable within +/- 1 mm; and the traverse requires to be controlled to shape the resulting bobbin. These combined criteria of high speed and controllability makes the use of electro-rheological fluids an attractive proposition. The paper considers the optimization of the traversing mechanism; both geometric and fluid parameters are considered. The limiting performance of the mechanism is detailed together with the effects on the precision of the mechanism. The paper also outlines control aspects of the mechanism and uses this to indicate important areas for consideration in the future development of electro- rheological fluids.

Paper Details

Date Published: 22 June 2000
PDF: 12 pages
Proc. SPIE 3985, Smart Structures and Materials 2000: Smart Structures and Integrated Systems, (22 June 2000); doi: 10.1117/12.388810
Show Author Affiliations
Andrew R. Johnson, Univ. of Sheffield (United Kingdom)
William A. Bullough, Univ. of Sheffield (United Kingdom)
John Makin, Univ. of Sheffield (United Kingdom)

Published in SPIE Proceedings Vol. 3985:
Smart Structures and Materials 2000: Smart Structures and Integrated Systems
Norman M. Wereley, Editor(s)

© SPIE. Terms of Use
Back to Top