Share Email Print

Proceedings Paper

Recent advances in a molecular level lithography simulation
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Computer simulation of microlithography is a valuable tool for both optimization of current processes and development of advanced techniques. The capability of a computer simulation is limited by the accuracy of the physical model for the process being simulated. The post exposure bake (PEB) of a deep-ultraviolet resist is one process for which an accurate physical model does not exist. During the PEB of a deep- ultraviolet resist, mass transport of photogenerated acid allows a single acid molecule to catalyze several deprotection reactions. Unfortunately, lateral transport of acid into unexposed regions of the resist complicates control over the critical dimension of printed features. An understanding of the factors that contribute to acid mobility would allow resist manufacturers to tailor resist transport properties to their needs. Molecular level models are particularly valuable when attempting to examine mechanistic phenomena and offer the best possibility of accurately predicting lithographic performance based upon the chemical formulation of a resist. This work presents a new, molecular scale simulation of the acid generation and transport process.

Paper Details

Date Published: 23 June 2000
PDF: 11 pages
Proc. SPIE 3999, Advances in Resist Technology and Processing XVII, (23 June 2000); doi: 10.1117/12.388354
Show Author Affiliations
Gerard M. Schmid, Univ. of Texas at Austin (United States)
Vivek K. Singh, Intel Corp. (United States)
Lewis W. Flanagin, Texas Instruments Inc. (United States)
Michael D. Stewart, Univ. of Texas at Austin (United States)
Sean D. Burns, Univ. of Texas at Austin (United States)
C. Grant Willson, Univ. of Texas at Austin (United States)

Published in SPIE Proceedings Vol. 3999:
Advances in Resist Technology and Processing XVII
Francis M. Houlihan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?