Share Email Print

Proceedings Paper

Toward controlled resist line-edge roughness: material origin of line-edge roughness in chemically amplified positive-tone resists
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Material origin of resist line edge roughness (LER) in positive-tone chemically amplified resists has been investigated by designing experiments to mimic the composition and the morphology of the resists in the line edge regions where the resist consists of both the protected polymer and its de-protected counterparts. Blends of the protected and the de-protected base polymers for two silicon containing, positive-tone chemically amplified resists were prepared. Morphology and surface roughness of thin films of the polymer blends were probed with atomic force microscope (AFM). AFM results clearly showed that the protected polymer and its de- protected counterparts form distinct phase separated morphology after spin coating and baking. This phase separation leads to surface roughening of the blend films. Furthermore, the surface roughness of the blend films is enhanced after development with an aqueous TMAH developer. These results suggest that the material origin of resist LER in positive-tone chemically amplified resists stems from the compositional heterogeneity due to phase incompatibility of the protected base polymer and its de-protected counterparts in the line edge regions. The effects of blend composition, the extent of de-protection, and processing conditions on the morphology and surface roughness will be presented. The implications of these findings for high-resolution resist design will also be discussed.

Paper Details

Date Published: 23 June 2000
PDF: 10 pages
Proc. SPIE 3999, Advances in Resist Technology and Processing XVII, (23 June 2000); doi: 10.1117/12.388307
Show Author Affiliations
Qinghuang Lin, IBM Thomas J. Watson Research Ctr. (United States)
Ratnam Sooriyakumaran, IBM Almaden Research Ctr. (United States)
Wu-Song Huang, IBM Microelectronics Div. (United States)

Published in SPIE Proceedings Vol. 3999:
Advances in Resist Technology and Processing XVII
Francis M. Houlihan, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?