Share Email Print

Proceedings Paper

Multiaxial models and experiments with ferroelectrics
Author(s): John E. Huber; Norman A. Fleck
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The use of ferroelectrics in increasingly demanding roles as sensors and actuators motivates study of their fundamental constitutive behavior. This paper gives a preliminary report on measurements of the behavior of PZT-5H under multiaxial loading paths, and comparison with model predictions. The loading paths considered are loading of poled material with electric field at various angles (theta) to the poling direction, and loading with uniaxial compressive stress rotated through various angles (theta) to the poling direction. In each case the material response is measured by tracking electric displacement in the form of surface charge. Model predictions are made using a self-consistent crystal plasticity approach. The model is able to predict well the response to multiaxial electric field loading. There is good qualitative agreement in the case of mechanical loading.

Paper Details

Date Published: 14 June 2000
PDF: 8 pages
Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); doi: 10.1117/12.388213
Show Author Affiliations
John E. Huber, Univ. of Cambridge (United Kingdom)
Norman A. Fleck, Univ. of Cambridge (United Kingdom)

Published in SPIE Proceedings Vol. 3992:
Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?