Share Email Print

Proceedings Paper

Modeling of stable and unstable polarization switching
Author(s): Hannes Kessler; Edwin R. Fuller Jr.; Herbert Balke
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

We examine the stability of polarization switching in polycrystalline ferroelectric/ferroelastic materials subject to continuous electromechanical loading. In case of unstable switching, a finite change of remanent polarization or strain result from an infinitesimally small increment of the applied load. A micromechanical switching model is studied as well as a simple macroscopic boundary value problem in combination with a phenomenological switching law. The micromechanical model of a ferroelastic layered composite is based on an energy switching criterion. Stable response is promoted by (i) homogeneity of mechanical stress, (ii) proximity of local load conditions to mechanical strain control. For the macroscopic boundary value problem of a ferroelectric ring, switching stability depends on the applied load conditions as follows: Charge control result in stable response; voltage control may initiate unstable switching. For voltage control, the mathematical instability disappears if a small amount of ferroelectric 'hardening' is postulated. Nevertheless, an enhanced switching activity is predicted near the former instability.

Paper Details

Date Published: 14 June 2000
PDF: 11 pages
Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); doi: 10.1117/12.388207
Show Author Affiliations
Hannes Kessler, Dresden Univ. of Technology (Germany)
Edwin R. Fuller Jr., National Institute of Standards and Technology (United States)
Herbert Balke, Dresden Univ. of Technology (Germany)

Published in SPIE Proceedings Vol. 3992:
Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top