Share Email Print

Proceedings Paper

Complete modeling of rotary ultrasonic motors actuated by traveling flexural waves
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ultrasonic rotary motors have the potential to meet this NASA need and they are developed as actuators for miniature telerobotic applications. These motors are being adapted for operation at the harsh space environments that include cryogenic temperatures and vacuum and analytical tools for the design of efficient motors are being developed. A hybrid analytical model was developed to address a complete ultrasonic motor as a system. Included in this model is the influence of the rotor dynamics, which was determined experimentally to be important to the motor performance. The analysis employs a 3D finite element model to express the dynamic characteristics of the stator with piezoelectric elements and the rotor. The details of the stator including the teeth, piezoelectric ceramic, geometry, bonding layer, etc. are included to support practical USM designs. A brush model is used for the interface layer and Coulomb's law for the friction between the stator and the rotor. The theoretical predictions were corroborated experimentally for the motor. In parallel, efforts have been made to determine the thermal and vacuum performance of these motors. To explore telerobotic applications for USMs a robotic arm was constructed with such motors.

Paper Details

Date Published: 14 June 2000
PDF: 10 pages
Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000);
Show Author Affiliations
Xiaoqi Bao, Jet Propulsion Lab. (United States)
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 3992:
Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?