Share Email Print

Proceedings Paper

Piezoelectrically actuated miniature peristaltic pump
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Increasingly NASA experiments, instruments and applications are requiring pumps that are miniature and consume low power. To address this need, a piezoelectrically actuated pump is being developed. This pump employs a novel volume displacing mechanism using flexural traveling waves that act peristaltically eliminating the need for values or physically moving parts. Finite element model was developed using ANSYS to predict the resonance frequency of the vibrating mode for the piezo pump driving stator. The model also allows determining simultaneously the mode shapes that are associated with the various resonance frequencies. This capability is essential for designing the pump size and geometry. To predict and optimize the pump efficiency, which is determined by the volume of pumping chambers, the model was modified to perform harmonic analysis. Current capability allows the determination of the effect of such design parameters as pump geometry, construction materials and operating modes on the volume of the chambers that is available between the peaks and valleys of the waves. Experiments were conducted using a breadboard of the piezo pump and showed water-pumping rate of about 3.0 cc/min. The performance of pump is continuing to be modified to enhance the performance and efficiency.

Paper Details

Date Published: 14 June 2000
PDF: 8 pages
Proc. SPIE 3992, Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics, (14 June 2000); doi: 10.1117/12.388190
Show Author Affiliations
Yoseph Bar-Cohen, Jet Propulsion Lab. (United States)
Zensheu Chang, Jet Propulsion Lab. (United States)

Published in SPIE Proceedings Vol. 3992:
Smart Structures and Materials 2000: Active Materials: Behavior and Mechanics
Christopher S. Lynch, Editor(s)

© SPIE. Terms of Use
Back to Top