Share Email Print
cover

Proceedings Paper

Mach-Zehnder optical fiber interferometers for the detection of ultrasound
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Ultrasonic Lamb waves have been extensively investigated for non-destructive testing of materials. Embedded or surface bonded optical fiber, acting as the signal arm of a Mach- Zehnder interferometer, is one method previously utilized to detect the Lamb waves. Optical fibers therefore have potential as permanent sensors for structural monitoring of damage and defects in materials. A greater understanding of the ultrasound interaction with the optical fiber sensor will bring application closer. In order to probe this interaction we built a two channel interferometer allowing ultrasound traveling through a material to be monitored simultaneously by a Mach-Zehnder interferometer and also a Michelson interferometer. The Michelson interferometer allows a non- constat measurement to be made of the absolute surface displacement associated with an ultrasonic Lamb wave. Comparison of the ultrasound signals detected by the two different interferometers provides a greater insight into the detection mechanism and sensitivity of the Mach-Zehnder interferometer. The work is then extended to look at embedded fibers in composite materials and damage detection.

Paper Details

Date Published: 12 June 2000
PDF: 8 pages
Proc. SPIE 3986, Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, (12 June 2000); doi: 10.1117/12.388118
Show Author Affiliations
Kathryn Atherton, Univ. of Strathclyde (United Kingdom)
Fengzhong Dong, Univ. of Strathclyde (United Kingdom)
S. Gareth Pierce, Univ. of Strathclyde (United Kingdom)
Brian Culshaw, Univ. of Strathclyde (United Kingdom)


Published in SPIE Proceedings Vol. 3986:
Smart Structures and Materials 2000: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials
Richard O. Claus; William B. Spillman Jr., Editor(s)

© SPIE. Terms of Use
Back to Top
PREMIUM CONTENT
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?
close_icon_gray