Share Email Print

Proceedings Paper

Determination of the temperature distribution in skin using a finite element model
Author(s): Thim N. Andersen; Niels-Christian Jessen; Lars Arendt-Nielsen
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

When applying noxious heat stimuli to human skin in the study of the pain system, one of the main problems is not to cause permanent damage. A better understanding of the temperature distribution and the propagation of heat, i.e. heat flux, in human skin is thus needed. In order to investigate these problems thoroughly, we have developed a 3-dimensional finite element model (FEM) 4-layer of human skin. The model is kept simple for better understanding of the boundary problems. The water content in each layer is used for determining the thermal properties. It is therefore not a homogenous structure. In this model the stratum corneum has been included with lower water content than in the epidermis. Simulations shows that the surface temperature reaches high levels whereas the temperature in the deeper structure is much lower. Thermal and optical constants found in the literature was applied. Heat propagation downwards and outwards from the source has been investigated to understand of the accumulation of energy in the boundary between two layers. Prediction of the heat flux at boundary between the epidermis and dermis shows that for repetitive stimulation there is a risk of exceeding the threshold temperature of 65 degrees Celsius for irreversible damage.

Paper Details

Date Published: 13 June 2000
PDF: 12 pages
Proc. SPIE 3914, Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical, (13 June 2000); doi: 10.1117/12.388022
Show Author Affiliations
Thim N. Andersen, Aalborg Univ. (Denmark)
Niels-Christian Jessen, Riso National Lab. (Denmark)
Lars Arendt-Nielsen, Aalborg Univ. (Denmark)

Published in SPIE Proceedings Vol. 3914:
Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical
Jeffrey O. Hollinger D.D.S.; Donald Dean Duncan; Jeffrey O. Hollinger D.D.S.; Donald Dean Duncan; Steven L. Jacques, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?