Share Email Print

Proceedings Paper

Full-scale reinforced concrete bridge bent condition assessment using forced vibration testing
Author(s): Jeremy L. Achter; Marvin W. Halling; Kevin C. Womack
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Recent research has been conducted at Utah State University regarding the ability to assess the condition of a reinforced concrete bridge bent. Three full-scale, in-situ, reinforced concrete bridge bents were tested and modeled through varying states of damage. Each bent was initially tested in an undamaged state using a horizontal sine-sweep test. The forced-vibration testing was achieved using an eccentric mass shaker. The structures were tested in the frequencies ranging from 1.0 Hz to 20.0 Hz in increments of 0.05 Hz. A known amount of damage was inflicted upon each bent for two separate states. The sine-sweep test was re-administered for each damage state. The changes in dynamic characteristics, such as frequencies and mode shapes, were noted from state to state. Detailed finite element models were constructed to match the changes in dynamic characteristics of each bent for each state. This was achieved by matching the severity and location of the structural damage of the model to the field structures. Decreases in structural stiffness were detected with modal analysis. The models were consistent in matching the changes of the field structures. A method was devised for locating possible regions of structural damage.

Paper Details

Date Published: 9 June 2000
PDF: 8 pages
Proc. SPIE 3995, Nondestructive Evaluation of Highways, Utilities, and Pipelines IV, (9 June 2000); doi: 10.1117/12.387831
Show Author Affiliations
Jeremy L. Achter, Utah State Univ. (United States)
Marvin W. Halling, Utah State Univ. (United States)
Kevin C. Womack, Utah State Univ. (United States)

Published in SPIE Proceedings Vol. 3995:
Nondestructive Evaluation of Highways, Utilities, and Pipelines IV
A. Emin Aktan; Stephen R. Gosselin; Stephen R. Gosselin, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?