Share Email Print

Proceedings Paper

Model predicting the microhole profiles of laser drilling processes in carbon fiber composites
Author(s): Frank F. Wu; Richard D. Pilkington
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Laser induced ablation of materials has became an extremely important area of research and application. The laser sources for ablation cover the wavelengths from ultraviolet (most are excimer lasers), visible (copper vapor lasers, argon ion lasers) to the infrared (Nd:YAG lasers, CO2 lasers). The laser material processing technique is intensely used in both the electronic and aerospace industries. In this paper, a new theoretical model describing laser microhole drilling processes in carbon fiber composites (CFC) has been developed, which can predict the profiles ofthe microholes for certain incident beam profiles. The calculated results for several specific incident beams will be presented in this paper. We show how the peak fluence, the beam diameter, and the material parameters (absorption coefficient, threshold ablation fluence) affect the hole shapes. Although the model is specific to CFC, it can be applied to any other laser micromachining process for materials such as polyimide, polymethylmethacrylate (PMMA), polyethylene terephthalate (PET) etc. We not only present a new method to model the drilling hole profiles but also explain why hole drilling will stop under certain circumstances in the low fluence regime for polymers and fiber reinforced composites. The model explains tapered wall formation and stabilized drilling, from which, high efficient laser drilling and cutting can be predicted in low fluence regimes. This new model is suitable for most well defined beams and materials such as polymers, fiber CFC, glass fiber composites and some ceramics.

Paper Details

Date Published: 7 June 2000
PDF: 12 pages
Proc. SPIE 3933, Laser Applications in Microelectronic and Optoelectronic Manufacturing V, (7 June 2000);
Show Author Affiliations
Frank F. Wu, Salford Univ. (United States)
Richard D. Pilkington, Salford Univ. (United Kingdom)

Published in SPIE Proceedings Vol. 3933:
Laser Applications in Microelectronic and Optoelectronic Manufacturing V
Henry Helvajian; Koji Sugioka; Malcolm C. Gower; Jan J. Dubowski, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?