Share Email Print

Proceedings Paper

Optimal design of a piezoelectric passive damper for vibrating plates
Author(s): Seung Jo Kim; Chul Yong Yun; Byung Joo Paek
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In this paper, an efficient piezoelectric passive damper is newly devised to suppress the multi-mode vibration of plates. To construct the passive damper, the piezoelectric materials are utilized as energy transformer, which can transform the mechanical energy to electrical energy. To dissipate the electrical energy transformed from mechanical energy, multiple resonant shunted piezoelectric circuits are applied. The dynamic governing equations of a coupled electro-mechanical piezoelectric with multiple piezoelectric patches and multiple resonant shunted circuits is derived and solved for the one edge clamped plate. The equations of motion of the piezoelectrics and shunted circuits as well as the plate are discretized by finite element method to estimate more exactly the effectiveness of the piezoelectric passive damper. The method to find the optimal location of a piezoelectric is presented to maximize effectiveness for desired modes. The electro-mechanical coupling term becomes important parameter to select the optimal location.

Paper Details

Date Published: 27 April 2000
PDF: 8 pages
Proc. SPIE 3989, Smart Structures and Materials 2000: Damping and Isolation, (27 April 2000); doi: 10.1117/12.384590
Show Author Affiliations
Seung Jo Kim, Seoul National Univ. (South Korea)
Chul Yong Yun, Seoul National Univ. (South Korea)
Byung Joo Paek, Seoul National Univ. (South Korea)

Published in SPIE Proceedings Vol. 3989:
Smart Structures and Materials 2000: Damping and Isolation
T. Tupper Hyde, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?