Share Email Print

Proceedings Paper

Imaging tree root systems in situ
Author(s): Lucian Wielopolski; George Hendrey; Jeffrey J. Daniels; Michael McGuigan
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

Predictions of global energy use in this century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO2) in the atmosphere. This represents a serious environmental problem and contributes significantly to greenhouse gases that affect global warming. Terrestrial ecosystems are a huge natural biological scrubber for CO2 currently sequestering, directly from the atmosphere, about 25% (approximately 2 GtC) of the 7.4 Gt of anthropogenic carbon emitted annually into the atmosphere. The major carbon pathways into soil are through plant litter and roots. Presently, there are no means by which root morphology, distribution, and mass can be measured without serious sampling artifacts that alter these properties. The current methods are destructive and labor intensive. Preliminary results using a high frequency, 1.5 Ghz, impulse Ground Penetrating Radar (GPR) for nondestructive imaging of tree root systems in situ are presented. The 3D reconstructed image is used to assess root morphology and dimensions. The constraints, limitations, and potential solutions for using GPR for tree root systems imaging and analysis are discussed.

Paper Details

Date Published: 27 April 2000
PDF: 5 pages
Proc. SPIE 4084, Eighth International Conference on Ground Penetrating Radar, (27 April 2000); doi: 10.1117/12.383538
Show Author Affiliations
Lucian Wielopolski, Brookhaven National Lab. (United States)
George Hendrey, Brookhaven National Lab. (United States)
Jeffrey J. Daniels, The Ohio State Univ. (United States)
Michael McGuigan, Brookhaven National Lab. (United States)

Published in SPIE Proceedings Vol. 4084:
Eighth International Conference on Ground Penetrating Radar
David A. Noon; Glen F. Stickley; Dennis Longstaff, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?