Share Email Print

Proceedings Paper

In-vivo study of the thermoregulation of the rat tail using magnetic resonance angiography (MRA)
Author(s): Greet Vanhoutte; Marleen Verhoye; Erik R.R. Raman; Anne-Marie Van der Linden
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In the rat, almost 20% of the total body heat-loss occurs by sympathetically mediated increases in blood flow through a system of arteriovenous anastomoses (AVAs) in the skin of the tail which are absent at the base and abundant at the tip. To study the mechanisms of thermoregulation in the rat tail we monitored online the blood vessel temperature and the arterial and venous vessel size and their mutual vascular volume interactions using in vivo MRA. During a gradual rise in rectal temperature from 36 degrees Celsius to 40 degrees Celsius, tail surface temperatures were measured at ventral (Ta) and lateral (Tv) sits overlying the respective vascular bundles. At the base, middle and tip, diameter of the ventral artery and the lateral veins of the heat-loaded animal increased clearly upon rising body temperature. Calculation of (Ta - Tv) in function of the rectal temperature during heating showed that at the tail base (Ta - Tv) was maximum at rectal temperature of 38 degrees Celsius and minimum at 39 degrees Celsius. At the middle and the tip of the tail, a steady rise of (Ta - Tv) was observed. If we assume that vasodilatation is a synchronical process along the length of the tail, then the difference in (Ta - Tv) is due to the presence of AVAs.

Paper Details

Date Published: 20 April 2000
PDF: 10 pages
Proc. SPIE 3978, Medical Imaging 2000: Physiology and Function from Multidimensional Images, (20 April 2000); doi: 10.1117/12.383429
Show Author Affiliations
Greet Vanhoutte, Univ. Antwerp (Belgium)
Marleen Verhoye, Univ. Antwerp (Belgium)
Erik R.R. Raman, Univ. Antwerp (Belgium)
Anne-Marie Van der Linden, Univ. Antwerp (Belgium)

Published in SPIE Proceedings Vol. 3978:
Medical Imaging 2000: Physiology and Function from Multidimensional Images
Chin-Tu Chen; Anne V. Clough, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?