Share Email Print

Proceedings Paper

Concept of dereverbation and its application to damage detection in civil structures
Author(s): Jun Ma; Darryll J. Pines
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

The vibratory behavior of a one dimensional spring mass system can be pictured by the superposition of traveling waves propagating along the structural network. Wave dynamics generated at natural boundaries and subsequently reflected at geometric boundaries can lead to pole-zero characteristics of a conventional Reverberated Transfer Function (RTF). By applying a wave model based virtual controller at these boundaries, a Dereverberated Transfer Function (DTF) can be obtained from the RTF. Since the DTF reveals the direct path of energy transmission across a one-dimensional structure, it is potentially useful for damage detection. In this paper, symmetric and asymmetric spring mass elements are used as the elementary cells for any arbitrary one-dimensional spring mass structure. This paper illustrates how to obtain the DTF from the RTF for discrete non-uniform structural elements. A three- degree-of-freedom (DOF) analytical building model is used for simulating several damage cases. Analytical results confirm that the DTF response can be used as a method for locating and quantifying damage in structures.

Paper Details

Date Published: 20 April 2000
PDF: 8 pages
Proc. SPIE 3988, Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways, (20 April 2000); doi: 10.1117/12.383133
Show Author Affiliations
Jun Ma, Univ. of Maryland/College Park (United States)
Darryll J. Pines, Univ. of Maryland/College Park (United States)

Published in SPIE Proceedings Vol. 3988:
Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways
S.-C. Liu, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?