Share Email Print

Proceedings Paper

LD-pumped slab Yb:YAG laser
Author(s): Masao Sato; Nobuaki Iehisa; Norio Karube
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

In recent years, the high power Yb:YAG lasers have been actively investigated due to the advantage of the high quantum efficiency of 91% which reduces the thermal loading in the Yb:YAG crystal. So far, the Yb:YAG laser with the output power higher than several hundreds watts has been developed using the crystal configurations of rod and thin disk. We have developed the Yb:YAG laser by employing the rectangular slab crystal in order to examine the possibility of realizing the high power slab Yb:YAG laser. The dimension of the Yb:YAG crystal used is 1 mm X 5 mm X 10 mm and its configuration is a rectangular parallelepiped, and the density of Yb is 1.1 atom%. The LD (Laser Diode) pump light focused with plano-convex lens is introduced through the 1 mm X 10 mm plane of this slab which is AR-coated at 940 nm while the opposite 1 mm X 10 mm plane is HR-coated at the same wavelength. The Yb:YAG laser cavity axis is in the direction perpendicular to the 1 mm X 5 mm planes which are AR-coated at 1030 nm. The two 5 mm X 10 mm planes are cooled by being contacted with the copper heat sinks which are cooled by the water at the temperature of 18 degrees Celsius. The CW output of 35 W was obtained when the power of LD pump light was 496 W. The optical efficiency was 7.1% with the optical slop efficiency of 12.2%.

Paper Details

Date Published: 3 April 2000
PDF: 8 pages
Proc. SPIE 3889, Advanced High-Power Lasers, (3 April 2000); doi: 10.1117/12.380886
Show Author Affiliations
Masao Sato, FANUC, Ltd. (Japan)
Nobuaki Iehisa, FANUC, Ltd. (Japan)
Norio Karube, FANUC, Ltd. (Japan)

Published in SPIE Proceedings Vol. 3889:
Advanced High-Power Lasers
Marek Osinski; Howard T. Powell; Koichi Toyoda, Editor(s)

© SPIE. Terms of Use
Back to Top
Sign in to read the full article
Create a free SPIE account to get access to
premium articles and original research
Forgot your username?